Bioaerosol in Composting Facilities: A Survey on Full-Scale Plants in Italy

Author:

Anedda ElisaORCID,Traversi DeborahORCID

Abstract

Bioaerosols lead to human health diseases and composting plants are one of the main sources among human activities. In this study, a survey was conducted on such plants to evaluate bioaerosol risk management. A questionnaire was used to collect information on plant location, process types, collective and personal protective equipment, bioaerosol and particulate matter monitoring data, and occupational surveillance. We examined the data produced by 11 plants located in Italy. Self-control bioaerosol monitoring showed a global contamination index mean of 9908 CFU/m3 underlining a higher concentration (a) in plants with only aerobic process (CPs) with respect to plants that also combined anaerobic treatment of the waste (ADCPs) (p < 0.05) and (b) in facilities with biocells with respect to windrows (p < 0.01). Workers are generally more exposed when working without vehicles. Some areas such as pre-treatment and screening are more prone to higher bioaerosol concentrations, requiring more efficient collective protective equipment. Particulate matter monitoring showed concentration in line with occupational exposure limits for inhalable dust (1862 ± 1729 µg/m3) and breathable dust (276 ± 126 µg/m3), however, organic particle exposure risk assessment has to be carefully reviewed. Improvements in the training program, process design, and health surveillance are desirable as major preventive tools.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference52 articles.

1. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis

2. Molecular characterization of fungal community dynamics in the initial stages of composting

3. Bioaerosols from composting facilities—A review;Wéry;Front. Cell. Infect. Microbiol.,2014

4. GREEN PAPER—On the Management of Bio-waste in the European Union—COM(2008) 811 Final,2008

5. Municipal Waste Report—Edition 2019,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3