Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in Măgurele, Romania

Author:

Mărmureanu LuminiţaORCID,Vasilescu JeniORCID,Slowik JayORCID,Prévôt André S. H.ORCID,Marin Cristina AntoniaORCID,Antonescu BogdanORCID,Vlachou Athanasia,Nemuc Anca,Dandocsi AlexandruORCID,Szidat SönkeORCID

Abstract

Aerosols and organic source apportionment were characterized using data collected during two measurement campaigns. These campaigns were conducted during the summer and winter seasons at Măgurele, a site located southwest of Bucharest, the capital of Romania and one of the largest cities in southeastern Europe (raking seven in Europe based on population). The summer campaign was conducted between 7 June–18 July 2012, and the winter campaign from 14 January–6 February 2013. Approximately 50% of the organic fraction contribution to the total submicron particulate matter sampled by aerosol mass spectrometer was evidenced during both seasons. Submicronic organic aerosol sources were quantified using the positive matrix factorization approach. For warm (summer) and cold (winter) seasons, more than 50% from total organics was represented by oxidized factors. For the summer season, separate analyses were conducted on data influenced by urban and non-urban sources. The influence of pollution from Bucharest on the measurement site was observed in aerosol concentration and composition. The primary organic aerosols have different contribution percentage during summer, depending on their main origin. The influence of Bucharest, during summer, included cooking contribution of 13%. The periods with more regional influence were characterized by lower contribution from traffic and biomass burning in a total proportion of 28%. In winter, the influence of local non-traffic sources was dominant. For more than 99% of the measurements, the biomass burning indicator, f 60 , exceeded the background value, with residential heating being an important source in this area. Fossil fuel contribution was confirmed for one week during the winter campaign, when 14 C analysis of total and elemental carbon revealed the presence of 17% fossil contributions to total carbon. Mass spectrometry, 14 C and absorption data suggest biomass burning as the predominant primary source of organic aerosols for the winter season.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference103 articles.

1. Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London

2. First allergenic pollen monitoring in Bucharest and results of three years collaboration with European aerobiology specialists

3. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Pachauri,2014

4. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Stocker,2013

5. Aerosol chemical composition and light scattering during a winter season in Beijing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3