Odor Characteristics and Concentration of Malodorous Chemical Compounds Emitted from a Combined Sewer System in Korea

Author:

Park SangjinORCID

Abstract

(1) Objectives: This study was carried out to investigate the characteristics of odors emitted from a combined sewer for the abatement of combined sewer odor. (2) Methods: The odor samples emitted from the combined sewer were collected at 14 sites, and the concentrations of 13 malodorous chemicals were determined by the instrumental analysis such as gas chromatography. To understand the sensory characteristic of the combined sewer odor, the on-site odor intensity (OOI) was evaluated by the direct sensory method using the human olfactory sensitivity of panelists with a normal sense of smell. The primary odor-causing compounds with high contribution were evaluated based on the converted odor concentration (COC), which was calculated by using the compound concentration and threshold limit value. Since the direct sensory method requires a lot of manpower and time, the converted odor intensity method (COI) calculated by the malodorous compound concentration was reviewed and compared with other cases. (3) Results: As a result of the instrumental analysis, four compounds which were higher than other compounds, showed an average of 325 ppb for H2S, 121 ppb for NH3, 102 ppb for CH3SH, and 108 ppb for toluene. The rest of the compounds appeared low, below 60 ppb. Based on the result of evaluating the COC, three compounds which are H2S, CH3SH, and (CH3)3N appeared to be compounds with a high contribution to combined sewer odor. Especially, it was estimated that H2S was the main odor-causing compound in this study. The on-site odor intensity of the combined sewer as judged by 5 panelists appeared to be 2.8 degrees on average, the same as COI. The correlation between the odor intensity and the H2S concentration in the combined sewer showed as the following equation: COI, degree = 1.0757 × log (H2S conc., ppb) + 0.3696. (4) Conclusions: In Korea, the odor emission standard in the atmosphere including sewer odor has adopted 20 ppb for H2S, and less than 2 degrees for odor intensity in the non-industrial area. However, since the mean observed odor intensity was 2.8 degrees and the concentration of H2S was also 325 ppb on average in this study, it was concluded that countermeasures should be prepared to reduce the complaints due to combined sewer odor in residential areas.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference35 articles.

1. Design Manual: Odor and Corrosion Control in Sanitary Sewerage Systems and Treatment Plants,1985

2. Odours in Sewerage—A Description of Emissions and of Technical Abatement Measures

3. Prioritisation of odorants emitted from sewers using odour activity values

4. Hazardous and odorous pollutants released from sewer manholes and stormwater catch basins in urban areas

5. Characterising volatile organic compounds from sewer emission by thermal desorption coupled with Gas-Chromatography-mass spectrometry;Wang;Chem. Eng. Trans.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3