A Numerical Study of Windstorms in the Lee of the Taebaek Mountains, South Korea: Characteristics and Generation Mechanisms

Author:

Lee Joohyun,Seo Jaemyeong Mango,Baik Jong-Jin,Park Seung-Bu,Han Beom-Soon

Abstract

The Yeongdong region, located east of the Taebaek Mountains, South Korea, often experiences severe windstorms in spring, causing a lot of damages, especially when forest fires spread out rapidly by strong winds. Here, the characteristics and generation mechanisms of the windstorms in the Yeongdong region on 8 April 2012 are examined through a high-resolution Weather Research and Forecasting (WRF) model simulation. In the Yangyang area, the steep descent of the isentropes on the lee slope of the mountain and their recovery farther leeward are seen. Inversion layers and incoming flow in hydraulic jump regime suggest that the hydraulic jump is responsible for the downslope windstorm. In the Jangjeon area, the plume-shaped wind pattern extending seaward from the gap exit is seen when the sea-level pressure difference between the gap inside and the gap exit, being responsible for the gap winds, is large. In the Uljin area, downslope windstorms pass over the region with weak wind, low Richardson number, and deep planetary boundary layer (PBL), making banded pattern in the wind and PBL height fields. This study demonstrates that the characteristics of the windstorms in the lee of the Taebaek Mountains and their generation mechanisms differ depending on local topographic features.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference44 articles.

1. Mesoscale Dynamics;Lin,2007

2. Mountain waves and downslope winds;Durran,1990

3. Some Aspects of the Flow of Stratified Fluids: I. A Theoretical Investigation

4. On the transfer of energy in stationary mountain waves;Eliassen;Geofys. Publ.,1960

5. The Dynamics of Wave-Induced Downslope Winds

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3