Impact of Precipitation with Different Intensity on PM2.5 over Typical Regions of China

Author:

Zhao Xin,Sun Yue,Zhao ChuanfengORCID,Jiang Huifei

Abstract

Atmospheric aerosol pollution has significant impacts on human health and economic society. One of the most efficient way to remove the pollutants from the atmosphere is wet deposition. This study selected three typical atmospheric pollution regions in China, the Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) regions, as research areas, and used the hourly precipitation and PM2.5 mass concentration data from 2015 to 2017 to investigate the removal impacts of precipitation on PM2.5. The PM2.5 mass concentration difference before and after the hourly precipitation events was used to denote as the impacts of precipitation. Hourly precipitation event was selected so that the time difference between two PM2.5 observations was short enough to limit the PM2.5 change caused by other factors. This study focused on the differences in the removal effect of precipitation on PM2.5 under different precipitation intensities and pollution levels. The results show that both precipitation intensity and aerosol amount affected the removal effect. A negative removal effect existed for both light precipitation and low PM2.5 mass concentration conditions. In contrast, a positive removal effect occurred for both high precipitation and high PM2.5 mass concentration conditions. The removal effect increased with increasing precipitation intensity and PM2.5 mass concentration before precipitation and was consistent with the change trend of wind speed at a height of 100 m. The findings of this study can help understand the mechanism of wet scavenging on air pollution, providing support for air pollution control in future.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Beijing Municipal Commission of science and technology

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3