Ensemble-Based Data Assimilation of Volcanic Ash Clouds from Satellite Observations: Application to the 24 December 2018 Mt. Etna Explosive Eruption

Author:

Pardini FedericaORCID,Corradini StefanoORCID,Costa AntonioORCID,Esposti Ongaro TomasoORCID,Merucci LucaORCID,Neri AugustoORCID,Stelitano DarioORCID,de’ Michieli Vitturi MattiaORCID

Abstract

Accurate tracking and forecasting of ash dispersal in the atmosphere and quantification of its uncertainty are of fundamental importance for volcanic risk mitigation. Numerical models and satellite sensors offer two complementary ways to monitor ash clouds in real time, but limits and uncertainties affect both techniques. Numerical forecasts of volcanic clouds can be improved by assimilating satellite observations of atmospheric ash mass load. In this paper, we present a data assimilation procedure aimed at improving the monitoring and forecasting of volcanic ash clouds produced by explosive eruptions. In particular, we applied the Local Ensemble Transform Kalman Filter (LETKF) to the results of the Volcanic Ash Transport and Dispersion model HYSPLIT. To properly simulate the release and atmospheric transport of volcanic ash particles, HYSPLIT has been initialized with the results of the eruptive column model PLUME-MoM. The assimilation procedure has been tested against SEVIRI measurements of the volcanic cloud produced during the explosive eruption occurred at Mt. Etna on 24 December 2018. The results show how the assimilation procedure significantly improves the representation of the current ash dispersal and its forecast. In addition, the numerical tests show that the use of the sequential Ensemble Kalman Filter does not require a precise initialization of the numerical model, being able to improve the forecasts as the assimilation cycles are performed.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3