Spatial Particulate Fields during High Winds in the Imperial Valley, California

Author:

Freedman Frank R.,English PaulORCID,Wagner Jeff,Liu YangORCID,Venkatram AkulaORCID,Tong Daniel Q.,Al-Hamdan Mohammad Z.,Sorek-Hamer Meytar,Chatfield Robert,Rivera AnaORCID,Kinney Patrick L.

Abstract

We examined windblown dust within the Imperial Valley (CA) during strong springtime west-southwesterly (WSW) wind events. Analysis of routine agency meteorological and ambient particulate matter (PM) measurements identified 165 high WSW wind events between March and June 2013 to 2019. The PM concentrations over these days are higher at northern valley monitoring sites, with daily PM mass concentration of particles less than 10 micrometers aerodynamic diameter (PM10) at these sites commonly greater than 100 μg/m3 and reaching around 400 μg/m3, and daily PM mass concentration of particles less than 2.5 micrometers aerodynamic diameter (PM2.5) commonly greater than 20 μg/m3 and reaching around 60 μg/m3. A detailed analysis utilizing 1 km resolution multi-angle implementation of atmospheric correction (MAIAC) aerosol optical depth (AOD), Identifying Violations Affecting Neighborhoods (IVAN) low-cost PM2.5 measurements and 500 m resolution sediment supply fields alongside routine ground PM observations identified an area of high AOD/PM during WSW events spanning the northwestern valley encompassing the Brawley/Westmorland through the Niland area. This area shows up most clearly once the average PM10 at northern valley routine sites during WSW events exceeds 100 μg/m3. The area is consistent with high soil sediment supply in the northwestern valley and upwind desert, suggesting local sources are primarily responsible. On the basis of this study, MAIAC AOD appears able to identify localized high PM areas during windblown dust events provided the PM levels are high enough. The use of the IVAN data in this study illustrates how a citizen science effort to collect more spatially refined air quality concentration data can help pinpoint episodic pollution patterns and possible sources important for PM exposure and adverse health effects.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference35 articles.

1. Asthma Related Emergency Department & Hospitalization data: Asthmawww.trackingcalifornia.org/asthma/query

2. Health Effects of Fine Particulate Air Pollution: Lines that Connect

3. Association between air pollution and asthma admission among children in Hong Kong

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3