Abstract
In this study, bias-corrected temperature and moisture retrievals from the Atmospheric Emitted Radiance Interferometer (AERI) were assimilated using the Data Assimilation Research Testbed ensemble adjustment Kalman filter to assess their impact on Weather Research and Forecasting model analyses and forecasts of a severe convective weather (SCW) event that occurred on 18–19 May 2017. Relative to a control experiment that assimilated conventional observations only, the AERI assimilation experiment produced analyses that were better fit to surface temperature and moisture observations and which displayed sharper depiction of surface boundaries (cold front, dry line) known to be important in the initiation and development of SCW. Forecasts initiated from the AERI analyses also exhibited improved performance compared to the control forecasts using several metrics, including neighborhood maximum ensemble probabilities (NMEP) and fractions skill scores (FSS) computed using simulated and observed radar reflectivity factor. Though model analyses were impacted in a broader area around the AERI network, forecast improvements were generally confined to the relatively small area of the computational domain located downwind of the small cluster of AERI observing sites. A larger network would increase the spatial coverage of “downwind areas” and provide increased sampling of the lower atmosphere during both active and quiescent periods. This would in turn offer the potential for larger and more consistent improvements in model analyses and, in turn, improved short-range ensemble forecasts. Forecast improvements found during this and other recent studies provide motivation to develop a nationwide network of boundary layer profiling sensors.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献