Retrieval of Cloud Liquid Water Using Microwave Signals from LEO Satellites: A Feasibility Study through Simulations

Author:

Shen XiORCID,Huang Defeng DavidORCID,Wang Wenxiao,Prein Andreas F.ORCID,Togneri Roberto

Abstract

A novel approach, using low Earth orbit (LEO) satellite microwave communication links for cloud liquid water measurements, is proposed in this paper. The feasibility of this approach is studied through simulations of the retrieval system including a LEO satellite communicating with a group of ground receivers equipped with signal-to-noise ratio (SNR) estimators, a synthetic cloud attenuation field and a tomographic retrieval algorithm. Rectangular and Gaussian basis functions are considered to define the targeted field. Simulation results suggest that the proposed least-squares based retrieval algorithm produces satisfactory outcomes for both types of basis functions. The root-mean-square error of the retrieved field is around 0.2 dB/km, with the range of the reference field as 0 to 2.35 dB/km. It is also confirmed that the partial retrieval of the cloud field is achievable when a limited number of receivers with restricted locations are available. The retrieval outcomes exhibit properties of high resolution and low error, indicating that the proposed approach has great potential for cloud observations.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference28 articles.

1. Estimation of Water Vapor and Clouds Using Microwave Sensors;Crewell,2005

2. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband

3. A hypothesis of 3D rainfall tomography using satellite signals;Huang;J. Commun. Inf. Netw.,2016

4. Principles of Computerized Tomographic Imaging;Kak,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3