Sensitivity Studies for a Hybrid Numerical–Statistical Short-Term Wind and Gust Forecast at Three Locations in the Basque Country (Spain)

Author:

Carreno-Madinabeitia SheilaORCID,Ibarra-Berastegi GabrielORCID,Sáenz JonORCID,Zorita Eduardo,Ulazia AlainORCID

Abstract

This study evaluates the performance of statistical models applied to the output of numerical models for short-term (1–24 h) hourly wind forecasts at three locations in the Basque Country. The target variables are horizontal wind components and the maximum wind gust at 3 h intervals. Statistical approaches such as persistence, analogues, linear regression, and random forest (RF) are used. The verification statistics used are coefficient of determination (R2) and root mean square error (RMSE). Statistical models use three inputs: (1) Local wind observations; (2) extended EOFs (empirical orthogonal functions) derived from past local observations and ERA-Interim variables in a previous 24-h period covering a domain around the area of study; and (3) wind forecasts provided by ERA-Interim. Results indicate that, for horizons less than 1–4 h, persistence is the best model. For longer predictions, RF provides the best forecasts. For horizontal components at 4–24 h horizons, RF slightly outperformed ERA-Interim wind forecasts. For gust, RF performs better than ERA-Interim for all the horizons. Persistence is the most influential factor for 2–5 h. Beyond this horizon, predictors from the ERA-Interim wind forecasts led the contribution. Hybrid numerical–statistical methods can be used to improve short-term wind forecasts.

Funder

Euskal Herriko Unibertsitatea

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3