The Comparison of Predicting Storm-Time Ionospheric TEC by Three Methods: ARIMA, LSTM, and Seq2Seq

Author:

Tang RongxinORCID,Zeng Fantao,Chen Zhou,Wang Jing-Song,Huang Chun-Ming,Wu Zhiping

Abstract

Ionospheric structure usually changes dramatically during a strong geomagnetic storm period, which will significantly affect the short-wave communication and satellite navigation systems. It is critically important to make accurate ionospheric predictions under the extreme space weather conditions. However, ionospheric prediction is always a challenge, and pure physical methods often fail to get a satisfactory result since the ionospheric behavior varies greatly with different geomagnetic storms. In this paper, in order to find an effective prediction method, one traditional mathematical method (autoregressive integrated moving average—ARIMA) and two deep learning algorithms (long short-term memory—LSTM and sequence-to-sequence—Seq2Seq) are investigated for the short-term predictions of ionospheric TEC (Total Electron Content) under different geomagnetic storm conditions based on the MIT (Massachusetts Institute of Technology) madrigal observation from 2001 to 2016. Under the extreme condition, the performance limitation of these methods can be found. When the storm is stronger, the effective prediction horizon of the methods will be shorter. The statistical analysis shows that the LSTM can achieve the best prediction accuracy and is robust for the accurate trend prediction of the strong geomagnetic storms. In contrast, ARIMA and Seq2Seq have relatively poor performance for the prediction of the strong geomagnetic storms. This study brings new insights to the deep learning applications in the space weather forecast.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3