Application of Positive Matrix Factorization Receptor Model for Source Identification of PM10 in the City of Sofia, Bulgaria

Author:

Hristova ElenaORCID,Veleva Blagorodka,Georgieva EmiliaORCID,Branzov Hristomir

Abstract

The Positive Matrix Factorization (PMF) receptor model is used for identification of source contributions to PM10 sampled during the period January 2019–January 2020 in Sofia. More than 200 filters were analyzed by X-Ray Fluorescence (XRF), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and Ion chromatography for chemical elements and soluble ions. Seasonal patterns of PM10 mass and elements’ concentration are observed with minimum in the summer months and maximum in the cold period. The results from source apportionment (SAP) study showed that the resuspension factor is the main contributor to the total PM10 mass (25%), followed by Biomass burning (BB) (23%), Mixed SO42− (19%), Sec (16%), Traffic (TR) (9%), Industry (IND) (4%), Nitrate rich (4%), and Fuel oil burning (FUEL) (0.4%) in Sofia. There are some similarities in relative contribution of the main factors compared to the years 2012–2013. The differences are in identification of the new factor described as mixed sulphate as well as the decrease of the FUEL factor. The results of comparing SAP with EPA PMF 5.0 and chemical transport models (CTM), given by Copernicus Atmosphere Monitoring Service, are presented and discussed for the first time for Bulgaria.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference65 articles.

1. World Health Organizationhttps://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

2. Atmospheric Chemistry and Physics. From Air Pollution to Climate Change;Seinfeld,2006

3. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

4. Annual Air Quality Assessment Report for 2015https://policy.atmosphere.copernicus.eu/reports/CAMS-71_SC22016_D71.1.3_201801_V2.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3