A Review of Ongoing Advancements in Soil and Water Assessment Tool (SWAT) for Nitrous Oxide (N2o) Modeling

Author:

Ghimire UttamORCID,Shrestha Narayan KumarORCID,Biswas AsimORCID,Wagner-Riddle Claudia,Yang Wanhong,Prasher Shiv,Rudra Ramesh,Daggupati Prasad

Abstract

Crops can uptake only a fraction of nitrogen from nitrogenous fertilizer, while losing the remainder through volatilization, leaching, immobilization and emissions from soils. The emissions of nitrogen in the form of nitrous oxide (N2O) have a strong potency for global warming and depletion of stratospheric ozone. N2O gets released due to nitrification and denitrification processes, which are aided by different environmental, management and soil variables. In recent years, researchers have focused on understanding and simulating the N2O emission processes from agricultural farms and/or watersheds by using process-based models like Daily CENTURY (DAYCENT), Denitrification-Decomposition (DNDC) and Soil and Water Assessment Tool (SWAT). While the former two have been predominantly used in understanding the science of N2O emission and its execution within the model structure, as visible from a multitude of research articles summarizing their strengths and limitations, the later one is relatively unexplored. The SWAT is a promising candidate for modeling N2O emission, as it includes variables and processes that are widely reported in the literature as controlling N2O fluxes from soil, including nitrification and denitrification. SWAT also includes three-dimensional lateral movement of water within the soil, like in real-world conditions, unlike the two-dimensional biogeochemical models mentioned above. This article aims to summarize the N2O emission processes, variables affecting N2O emission and recent advances in N2O emission modeling techniques in SWAT, while discussing their applications, strengths, limitations and further recommendations.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3