Towards a Better Design of Convection-Allowing Ensembles for Precipitation Forecasts over Ensenada, Baja California, Mexico

Author:

Mayor Yandy G.ORCID,Gross MarkusORCID,Magar VanesaORCID

Abstract

Convective ensembles promise to increase forecast accuracy while at the same time providing information on the probability of the forecast. A vast number of different methods of ensemble creation have been developed over time. Here, initial conditions and model error uncertainties are represented by a convective-allowing ensemble with more than 50 members. The results are analyzed using one case study with relatively high precipitation over Ensenada, Baja California, Mexico. The ensemble members are perturbed using random initial perturbations, breeding, and the Stochastic Kinetic Energy Backscatter parameterization (SKEBS) within the Weather Research and Forecasting (WRF) model. The aim is to improve the high-resolution ensemble design provided in a previous study for the same region by maximizing the spread of an ensemble with low member count. To this end, a comparative analysis of the members is performed using perturbation growth rates and information entropy. In addition, a comparative verification is performed using observations from one automatic meteorological station and satellite-derived precipitation data. It was found that the growth rates and the one-dimensional power spectral density of the initial perturbation fields are clustered depending on each member’s origin and the methods used to generate the breeding members. An inverse relationship was observed between these two variables, which can be useful for selecting appropriate initial condition perturbations. The dynamical injections of energy, introduced as perturbations to the numerical fields by the SKEBS method, were essential to maintain positive growth rates during the simulation period. Evaluation of the information entropy suggests that a selection of a set of members generated by the SKEBS method is best for increasing the ensemble spread while saving computer resources.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3