Inversion Method of Regional Range-Dependent Surface Ducts with a Base Layer by Doppler Weather Radar Echoes Based on WRF Model

Author:

Liu Xiaozhou,Wu Zhensen,Wang Hongguang

Abstract

Ground clutter caused by variations of atmospheric refraction environment can occur when the weather radar is observing precipitation systems, especially in the presence of a tropospheric duct. Therefore, the acquisition of duct parameters is very important for evaluating radar performance and improving data quality. Based on the measured echo data of a Doppler weather radar located at Qingdao and the numerical simulation results of modified refractivity profiles from the Weather Research and Forecasting (WRF) model, an inversion method for regional range-dependent tropospheric duct parameters over the sea area is proposed in this paper. Due to the higher antenna height of up to 169 m, the transmission environment is assumed to be a surface duct with a base layer for locating the antenna in the trapping layer. The Principal Component Analysis (PCA) and Parabolic Equation (PE) methods were used to characterize the horizontal inhomogeneity of duct parameters and the propagation of electromagnetic waves in the tropospheric duct. In the inversion model, duct parameters extracted from WRF outputs were used as the initial values. Additionally, multithread parallel processing was adopted in order to reduce the inversion time based on the characteristics of the optimization algorithm. The overall variation tendencies of the WRF simulation results in the regional distribution of duct parameters were well consistent with the inversion results, but were relatively lower in terms of specific values. Due to the influence of precipitation targets on measured echo data, the inversed echo data had different agreements with the measurements in space, and the absolute error values were less than 5 dB in about 90% of the region of interest.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3