The Precipitation Imaging Package: Assessment of Microphysical and Bulk Characteristics of Snow

Author:

Pettersen ClaireORCID,Bliven Larry F.,von Lerber AnnakaisaORCID,Wood Norman B.ORCID,Kulie Mark S.ORCID,Mateling Marian E.ORCID,Moisseev Dmitri N.,Munchak S. Joseph,Petersen Walter A.ORCID,Wolff David B.

Abstract

Remote-sensing observations are needed to estimate the regional and global impacts of snow. However, to retrieve accurate estimates of snow mass and rate, these observations require augmentation through additional information and assumptions about hydrometeor properties. The Precipitation Imaging Package (PIP) provides information about precipitation characteristics and can be utilized to improve estimates of snowfall rate and accumulation. Here, the goal is to demonstrate the quality and utility of two higher-order PIP-derived products: liquid water equivalent snow rate and an approximation of volume-weighted density called equivalent density. Accuracy of the PIP snow rate and equivalent density is obtained through intercomparison with established retrieval methods and through evaluation with colocated ground-based observations. The results confirm the ability of the PIP-derived products to quantify properties of snow rate and equivalent density, and demonstrate that the PIP produces physically realistic snow characteristics. When compared to the National Weather Service (NWS) snow field measurements of six-hourly accumulation, the PIP-derived accumulations were biased only +2.48% higher. Additionally, this work illustrates fundamentally different microphysical and bulk features of low and high snow-to-liquid ratio events, through assessment of observed particle size distributions, retrieved mass coefficients, and bulk properties. Importantly, this research establishes the role that PIP observations and higher-order products can serve for constraining microphysical assumptions in ground-based and spaceborne remotely sensed snowfall retrievals.

Funder

National Aeronautics and Space Administration

National Oceanic and Atmospheric Administration

Academy of Finland

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3