Characterization of Wind-Sea- and Swell-Induced Wave Energy along the Norwegian Coast

Author:

Christakos KonstantinosORCID,Varlas GeorgeORCID,Cheliotis Ioannis,Spyrou ChristosORCID,Aarnes Ole JohanORCID,Furevik Birgitte Rugaard

Abstract

The necessity to reduce C O 2 emissions in combination with the rising energy demand worldwide makes the extensive use of renewable energy sources increasingly important. To that end, countries with long coastlines, such as Norway, can exploit ocean wave energy to produce large amounts of power. In order to facilitate these efforts as well as to provide quantitative data on the wave energy potential of a specific area, it is essential to analyze the weather and climatic conditions detecting any variabilities. The complex physical processes and the atmosphere-wave synergetic effects make the investigation of temporal variability of wave energy a challenging issue. This work aims to shed new light on potential wave energy mapping, presenting a spatio-temporal assessment of swell- and wind-sea-induced energy flux in the Nordic Seas with a focus on the Norwegian coastline using the NORA10 hindcast for the period 1958–2017 (59 years). The results indicate high spatial and seasonal variability of the wave energy flux along the coast. The maximum wave energy flux is observed during winter, while the minimum is observed during summer. The highest coastal wave energy flux is observed in the Norwegian Sea. The majority of areas with dominant swell conditions (i.e., in the Norwegian Sea) are characterized by the highest coastal wave energy flux. The maximum values of wave energy flux in the North Sea are denoted in its northern parts in the intersection with the Norwegian Sea. In contrast to the Norwegian Sea, areas located in the North Sea and the Barents Sea show that wind sea is contributing more than swell to the total wave energy flux.

Funder

Statens vegvesen

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference52 articles.

1. A Clean Planet for All—A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy,2018

2. Renewable Energy Resources

3. Marine Renewable Energy Seascape

4. A review of the tidal current energy resource in Norway

5. The economics of wave energy: A review

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3