Abstract
The gas-phase reaction between trans-2-methyl-2-butenal and chlorine (Cl) atoms has been studied in a simulation chamber at 298 ± 2 K and 760 ± 5 Torr of air under free-NOx conditions. The rate coefficient of this reaction was determined as k = (2.45 ± 0.32) × 10−10 cm3 molecule−1 s−1 by using a relative method and Fourier transform infrared spectroscopy. In addition to this technique, gas chromatography coupled to mass spectrometry and proton transfer time-of-flight mass spectrometry were used to detect and monitor the time evolution of the gas-phase reaction products. The major primary reaction product from the addition of Cl to the C-3 of trans-2-methyl-2-butenal was 3-chloro-2-butanone, with a molar yield (YProd) of (52.5 ± 7.3)%. Acetaldehyde (Y = (40.8 ± 0.6)%) and HCl were also identified, indicating that the H-abstraction by Cl from the aldehyde group is a reaction pathway as well. Secondary organic aerosol (SOA) formation was investigated by using a fast mobility particle sizer spectrometer. The SOA yield in the Cl + trans-2-methyl-2-butenal reaction is reported to be lower than 2.4%, thus its impact can be considered negligible. The atmospheric importance of the titled reaction is similar to the corresponding OH reaction in areas with high Cl concentration.
Funder
European Regional Development Fund
European Research Council
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献