Abstract
On 14 August 2018, Morandi Bridge in Genoa, Italy, collapsed to the ground that was 40 m below. This tragedy killed 43 people. Preliminary investigations indicated poor design, questionable building practices, and insufficient maintenance—or a combination of these factors—as a possible cause of the collapse. However, around the collapse time, a thunderstorm associated with strong winds, lightning, and rain also developed over the city. While it is unclear if this thunderstorm played a role in the collapse, the present study examines the weather conditions before and during the bridge collapse. The study particularly focuses on the analysis of a downburst that was observed around the collapse time and a few kilometers away from the bridge. Direct and remote sensing measurements are used to describe the evolution of the thunderstorm during its approached from the sea to the city. The Doppler lidar measurements allowed the reconstruction of the gust front shape and the evaluation of its displacement velocity of 6.6 m s−1 towards the lidar. The Weather Research and Forecasting simulations highlighted that it is still challenging to forecast localized thunderstorms with operational setups. The study has shown that assimilation of radar reflectivity improves the timing and reconstruction of the gust front observed by local measurements.
Funder
European Research Council
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献