Abstract
A wide range of wave energy applications relies on the accurate estimation of extreme wave conditions, while some of them are frequently affected by directionality. For example, attenuators and terminators are the most common types of wave energy converters whose performance is highly influenced by their orientation with respect to the prevailing wave direction. In this work, four locations in the eastern Mediterranean Sea are selected with relatively high wave energy flux values and extreme wave heights are examined with wave direction as a covariate. The Generalized Pareto distribution is used to model the extreme values of wave height over a pre-defined threshold, with its parameters being expressed as a function of wave direction through Fourier series expansion. In order to be consistent with the analysis obtained from the independent fits for directional sectors, the estimation of parameters is based on a penalized maximum likelihood criterion that ensures a good agreement between the two approaches. The obtained results validate the integration of directionality in extreme value models for the examined locations and design values of significant wave height are provided with respect to direction for the 50- and 100-year return period with bootstrap confidence intervals.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献