Behaviors of Chromium in Coal-Fired Power Plants and Associated Atmospheric Emissions in Guizhou, Southwest China

Author:

Li Zhonggen,Wang Qingfeng,Xiao Zhongjiu,Fan Leilei,Wang Dan,Li Xinyu,Du Jia,Cheng Junwei

Abstract

Coal burning is a main concern for a range of atmospheric pollutants, including the environmentally sensitive element chromium (Cr). Cr migrates to the environment through stack emissions and can leach out from solid coal-burning byproducts, thereby causing adverse effects on the ecosystem. In this study, atmospheric emissions of Cr from six coal-fired power plants (CFPPs), as well as the distribution of Cr inside these CFPPs in Guizhou Province, Southwest China, were investigated. Among the six CFPPs, one was a circulating fluidized bed boiler and the others were pulverized coal boilers. The results showed that Cr in the feed fuel of these CFPPs ranged from 39.5 to 101.5 mg·kg−1 (average: 68.0 ± 24.8 mg·kg−1) and was approximately four times higher than the national and global average. Cr in the feed fuel correlated significantly with the ash yield, demonstrating that Cr in coal is closely associated with ash-forming minerals. After the coal combustion and the treatment by different air pollution control devices, most Cr (>92%) in the installation was retained in the captured fly ash and bottom ash, with less as gypsum (0.69–7.94%); eventually, only 0.01–0.03% of Cr was emitted into the atmosphere with a concentration of 1.4–2.2 μg·Nm−3. The atmospheric emission factors of Cr for these utility boilers were as low as 14.86 ± 3.62 mg Cr·t−1 coal, 7.72 ± 2.53 μg Cr (kW·h)−1, and 0.70 ± 0.19 g Cr·TJ−1, respectively. About 981 kg·y−1 of Cr was discharged into the atmosphere from Guizhuo’s CFPPs in 2017, much lower than previous reported values. Most of the Cr in the CFPPs ended up in solid combustion products, identifying the need for the careful disposal of high-Cr-containing ashes (up to 500 mg·kg−1) to prevent possible mobilization into the environment.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3