Urban-Scale NO2 Prediction with Sensors Aboard Bicycles: A Comparison of Statistical Methods Using Synthetic Observations

Author:

Bertero Christophe,Léon Jean-FrançoisORCID,Trédan Gilles,Roy MathieuORCID,Armengaud Alexandre

Abstract

Mobile devices for city-scale air quality monitoring is receiving increasing attention due to the advent of low-cost and miniaturized sensors. Mobility and crowdsensing have emerged as a new means to investigate the ambient air quality in urban areas. However, the design of the network (e.g., number of sensors per unit area) and the scientific interpretation of collected data with an ad hoc method are still challenging. In this paper, we focus on the use of a fleet of private bicycles to monitor NO2 concentrations in the city of Marseille, France. The study is based on synthetic observations generated by means of a regional air quality simulation system at a spatial resolution of 25 m × 25 m and simulated bike trips that are randomly generated in the city. The bike trips correspond to a maximum of 4500 bike commuters and are generated using a web-based navigation service. Simulated bike tracks are validated using available statistics on bike counts. Each bike track is associated with the along-track corresponding NO2 concentrations collected from the air quality simulations and physical features on the ground collected from Open Street Map. Spatialization of the information collected aboard the bikes is tested by using three different algorithms: kriging, land-use regression (LUR) and neural network (NN). LUR and NN show that the fleet can be limited to below 100 bikes while the performance of kriging is steadily increasing with the number of bikes. Increasing the sample distance above 200 m also impairs the citywide prediction of simulated NO2 concentrations.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3