Conserved Structure Associated with Different 3′CITEs Is Important for Translation of Umbraviruses

Author:

Bera Sayanta1ORCID,Ilyas Muhammad1,Mikkelsen Anna A.1,Simon Anne E.1

Affiliation:

1. Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20772, USA

Abstract

The cap-independent translation of plus-strand RNA plant viruses frequently depends on 3′ structures to attract translation initiation factors that bind ribosomal subunits or bind directly to ribosomes. Umbraviruses are excellent models for studying 3′ cap-independent translation enhancers (3′CITEs), as umbraviruses can have different 3′CITEs in the central region of their lengthy 3′UTRs, and most also have a particular 3′CITE (the T-shaped structure or 3′TSS) near their 3′ ends. We discovered a novel hairpin just upstream of the centrally located (known or putative) 3′CITEs in all 14 umbraviruses. These CITE-associated structures (CASs) have conserved sequences in their apical loops and at the stem base and adjacent positions. In 11 umbraviruses, CASs are preceded by two small hairpins joined by a putative kissing loop interaction (KL). Converting the conserved 6-nt apical loop to a GNRA tetraloop in opium poppy mosaic virus (OPMV) and pea enation mosaic virus 2 (PEMV2) enhanced translation of genomic (g)RNA, but not subgenomic (sg)RNA reporter constructs, and significantly repressed virus accumulation in Nicotiana benthamiana. Other alterations throughout OPMV CAS also repressed virus accumulation and only enhanced sgRNA reporter translation, while mutations in the lower stem repressed gRNA reporter translation. Similar mutations in the PEMV2 CAS also repressed accumulation but did not significantly affect gRNA or sgRNA reporter translation, with the exception of deletion of the entire hairpin, which only reduced translation of the gRNA reporter. OPMV CAS mutations had little effect on the downstream BTE 3′CITE or upstream KL element, while PEMV2 CAS mutations significantly altered KL structures. These results introduce an additional element associated with different 3′CITEs that differentially affect the structure and translation of different umbraviruses.

Funder

National Science Foundation

United States Department of Agriculture

USDA-NIFA

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference54 articles.

1. Non-canonical translation in RNA viruses;Firth;J. Gen. Virol.,2012

2. Non-canonical translation initiation mechanisms employed by eukaryotic viral mRNAs;Sorokin;Biochem. Mosc.,2021

3. Simon, A.E., Mäkinen, K., Li, Y., and Verchot, J. (2007). Field’s Virology, Lippincott Williams & Wilkins. [7th ed.].

4. 3′ Cap-independent translation enhancers of plant viruses;Simon;Annu. Rev. Microbiol.,2013

5. Structural and functional diversity of plant virus 3-cap-independent translation enhancers (3′-CITEs);Truniger;Front. Plant Sci.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3