Application of a Sequential Extraction Method for Analyzing Cu Distribution in Pre-Treated Mine Tailings after Electrodialytic Remediation

Author:

Lazo AndreaORCID,Hansen Henrik,Lazo Pamela,Gutiérrez Claudia

Abstract

Mine tailings have been analyzed by a sequential extraction procedure after their pre-treatment with a leaching solution for 24 h and electrodialytic remediation during 15 days with a constant electric field of 2.7 V cm−1. Four leaching solutions were tested: H2SO4 + HNO3 (2:1 vol.) pH = 1.9; H2SO4 + HNO3 (2:1 vol) pH = 4.2; NH4Cl 0.8M, pH = 5.5 and 30% H2O2 adjusted to pH 2 with HNO3 1M + HCl 1M. After the treatment, the tailings were divided in six slices from anode to cathode. The highest removal efficiency of copper was obtained with H2SO4 + HNO3 pH = 1.9, which allows one to remove 67% of the copper in the total cell and 85% of the copper in the slice closest to anode. The same solution with pH = 4.2 allows one to remove 62% of the total copper. The analysis realized by the sequential extraction method indicates the easy removal of water-soluble and exchangeable fractions in all experiments, moreover, residual and sulfide are the less mobile fractions. The general trend was the movement of copper associated to different fractions from anode to cathode and its accumulation closest to the cathode in the case of exchangeable, Fe-Mn oxides and acid soluble fractions, possibly due to some precipitation of copper compounds associated with less acidic conditions.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference24 articles.

1. Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches

2. Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils;Huang;Int. J. Electrochem. Sci.,2012

3. Advances in electrokinetic remediation for the removal of organic contaminants in soils;Cameselle,2013

4. Electrodialytic Remediation of Copper Mine Tailings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3