Optimization of Municipal Waste Collection Routing: Impact of Industry 4.0 Technologies on Environmental Awareness and Sustainability

Author:

Bányai Tamás,Tamás Péter,Illés Béla,Stankevičiūtė Živilė,Bányai ÁgotaORCID

Abstract

The accelerated movement of people towards cities led to the fact that the world’s urban population is now growing by 60-million persons per year. The increased number of cities’ population has a significant impact on the produced volume of household waste, which must be collected and recycled in time. The collection of household waste, especially in downtown areas, has a wide range of challenges; the collection system must be reliable, flexible, cost efficient, and green. Within the frame of this paper, the authors describe the application possibilities of Industry 4.0 technologies in waste collection solutions and the optimization potential in their processes. After a systematic literature review, this paper introduces the waste collection process of downtowns as a cyber-physical system. A mathematical model of this waste collection process is described, which incorporates routing, assignment, and scheduling problems. The objectives of the model are the followings: (1) optimal assignment of waste sources to garbage trucks; (2) scheduling of the waste collection through routing of each garbage truck to minimize the total operation cost, increase reliability while comprehensive environmental indicators that have great impact on public health are to be taken into consideration. Next, a binary bat algorithm is described, whose performance is validated with different benchmark functions. The scenario analysis validates the model and then evaluates its performance to increase the cost-efficiency and warrant environmental awareness of waste collection process.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3