Abstract
As the second largest inland river basin situated in the middle of the Hexi Corridor, Northwest China, the Heihe River basin (HRB) has been facing a severe water shortage problem, which seriously restricts its green and sustainable development. The evaluation of climate change impact on water productivity inferred by crop yield and actual evapotranspiration is of significant importance for water-saving in agricultural regions. In this study, the multi-model projections of climate change under the three Representative Concentration Pathways emission scenarios (RCP2.6, RCP4.5, RCP8.5) were used to drive an agro-hydrological model to evaluate the crop water productivity in the middle irrigated oases of the HRB from 2021–2050. Compared with the water productivity simulation based on field experiments during 2012–2015, the projected water productivity in the two typical agricultural areas (Gaotai and Ganzhou) both exhibited an increasing trend in the future 30 years, which was mainly attributed to the significant decrease of the crop water consumption. The water productivity in the Gaotai area under the three RCP scenarios during 2021–2050 increased by 9.2%, 14.3%, and 11.8%, while the water productivity increased by 15.4%, 21.6%, and 19.9% in the Ganzhou area, respectively. The findings can provide useful information on the Hexi Corridor and the Belt and Road to policy-makers and stakeholders for sustainable development of the water-ecosystem-economy system.
Funder
National Natural Science Foundation of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference60 articles.
1. Climate Change 2013–The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014
2. Variation trend of yearly mean air temperature and precipitation in China in the last 50 years;Zuo;Plateau Meteorol.,2004
3. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff
4. Downscaling daily precipitation over the Yellow River source region in China: a comparison of three statistical downscaling methods
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献