Effect of Increased Influent COD on Relieving the Toxicity of CeO2 NPs on Aerobic Granular Sludge

Author:

Zheng Xiaoying,Zhang Yuan,Chen Wei,Wang Weihong,Xu Hang,Shao Xiaoyao,Yang Mengmeng,Xu Zhi,Zhu Linghua

Abstract

Due to the increased use of cerium oxide nanoparticles (CeO2 NPs), their potential environmental risks have caused concern. However, their effects on the aerobic granular sludge (AGS) process and the later recovery of AGS are still unclear. In this study, we comprehensively determined the changes in pollutant removal and the levels of extracellular polymeric substances (EPS) in AGS that were exposed to CeO2 NP treatments (0 (the control, R0), 1 (R1), and 5 (R5) mg/L), following an increase in the influent chemical oxygen demand (COD). An increase in the CeO2 NP concentration enhanced their inhibitory effect on the removal of total nitrogen (TN) and total phosphorus (TP), and promoted the production of polysaccharides (PS) and proteins (PN) in loosely bound EPS (LB-EPS) or tightly bound EPS (TB-EPS), as well as the dissolved organic carbon (DOC) components in EPS, but had no long-term effects on the removal of organic matter. When the addition of CeO2 NPs was stopped and the concentration of influent COD increased, the TN and TP removal efficiencies in R1 and R5 slowly increased and recovered. In R1, they were only 4.55 ± 0.55% and 2.71 ± 0.58% lower than in R0, respectively, while the corresponding values for R5 were 5.06 ± 0.46% and 6.20 ± 0.63%. Despite the LB-EPS and TB-EPS concentrations in the R1 and R5 treatments recovering and being similar to the levels in the control when no CeO2 NPs were added, they were still slightly higher than in the R0, which indicating that the negative effects of CeO2 NPs could not be completely eliminated due to the residual CeO2 NP levels in AGS.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3