A Biophysical Analysis on the Arm Stroke Efficiency in Front Crawl Swimming: Comparing Methods and Determining the Main Performance Predictors

Author:

Peterson Silveira ,Soares ,Zacca ,Alves ,Fernandes ,de Souza Castro ,Vilas-Boas

Abstract

Purpose: to compare different methods to assess the arm stroke efficiency (?F ), whenswimming front crawl using the arms only on the Measurement of Active Drag System (MADSystem) and in a free-swimming condition, and to identify biophysical adaptations to swimming onthe MAD System and the main biophysical predictors of maximal swimming speed in the 200 mfront crawl using the arms only (?200m). Methods: fourteen swimmers performed twice a 5 × 200 mincremental trial swimming the front crawl stroke using the arms only, once swimming freely, andonce swimming on the MAD System. The total metabolic power was assessed in both conditions.The biomechanical parameters were obtained from video analysis and force data recorded on theMAD System. The ?F was calculated using: (i) direct measures of mechanical and metabolic power(power-based method); (ii) forward speed/hand speed ratio (speed-based method), and (iii) thesimplified paddle-wheel model. Results: both methods to assess ?F on the MAD System differed (p< 0.001) from the expected values for this condition (?F = 1), with the speed-based method providingthe closest values (?F~0.96). In the free-swimming condition, the power-based (?F~0.75), speedbased(?F~0.62), and paddle-wheel (?F~0.39) efficiencies were significantly different (p < 0.001).Although all methods provided values within the limits of agreement, the speed-based methodprovided the closest values to the “actual efficiency”. The main biophysical predictors of ?200mwere included in two models: biomechanical (R2 = 0.98) and physiological (R2 = 0.98). Conclusions:our results suggest that the speed-based method provides the closest values to the “actual ?F” andconfirm that swimming performance depends on the balance of biomechanical and bioenergeticparameters

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3