Author:
Li Jinsheng,Shang Jianying,Huang Ding,Tang Shiming,Zhao Tianci,Yang Xiaomeng,Zhang Qian,Liu Kesi,Shao Xinqing
Abstract
The distribution of soil particle sizes is closely related to soil health condition. In this study, grasslands under different grazing intensities and different cultivation ages grasslands were selected to evaluate the dynamics of soil particle size redistribution in different soil layers. When the grazing intensity increased, the percentage of 2000~150-μm soil particles in the 0–10-cm soil layer decreased; 150~53-μm soil particles remained relatively stable among the grazing intensities—approximately 28.52%~35.39%. However, the percentage of less than 53-μm soil particles increased. In cultivated grasslands, the larger sizes (>53 μm) of soil particles increased and the smaller sizes (<53 μm) decreased significantly (p < 0.05) in the 0–10 cm-soil layer with increasing cultivation ages. The increase in small soil particles (<53 μm) in topsoil associated with grazing intensity increased the potential risk of further degradation by wind erosion. The increase in big soil particles (>53 μm) in topsoil associated with cultivation ages decreased the soil capacity of holding water and nutrient. Therefore, to maintain the sustainability of grassland uses, grazing grasslands need to avoid heavy grazing, and cultivated grasslands need to change current cultivation practices.
Funder
National Key Research and Development Program; Key Science and Technology Project in Qinghai province; Beijing Science and Technology Plan
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献