Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification

Author:

Quan Jinling

Abstract

Urban forms and functions have critical impacts on urban heat islands (UHIs). The concept of a “local climate zone” (LCZ) provides a standard and objective protocol for characterizing urban forms and functions, which has been used to link urban settings with UHIs. However, only a few structure types and surface cover properties are included under the same climate background or only one or two time scales are considered with a high spatial resolution. This study assesses multi-temporal land surface temperature (LST) characteristics across 18 different LCZ types in Beijing, China, from July 2017 to June 2018. A geographic information system-based method is employed to classify LCZs based on five morphological and coverage indicators derived from a city street map and Landsat images, and a spatiotemporal fusion model is adopted to generate hourly 100-m LSTs by blending Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and FengYun-2F LSTs. Then, annual and diurnal cycle parameters and heat island and cool island (HI or CI) frequency are linked to LCZs at annual, seasonal, monthly, and diurnal scales. Results indicate that: (1) the warmest zones are compact and mid and low-rise built-up areas, while the coolest zones are water and vegetated types; (2) compact and open high-rise built-up areas and vegetated types have seasonal thermal patterns but with different causes; (3) diurnal temperature ranges are the highest for compact and large low-rise settings but the lowest for water and dense or scattered trees; and (4) HIs are the most frequent summertime and daytime events, while CIs occur primarily during winter days, making them more or less frequent for open or compact and high- or low-rise built-up areas. Overall, the distinguishable LSTs or UHIs between LCZs are closely associated with the structure and coverage properties. Factors such as geolocation, climate, and layout also interfere with the thermal behavior. This study provides comprehensive information on how different urban forms and functions are related to LST variations at different time scales, which supports urban thermal regulation through urban design.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

National Science and Technology Key Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3