Airborne Survival of Escherichia coli under Different Culture Conditions in Synthetic Wastewater

Author:

Chan Wing Lam,Chung Wing Tung,Ng Tsz Wai

Abstract

Bioaerosol generated in wastewater treatment plants has potential to harm human health. Survival of bacteria in bioaerosol during suspension is one of the major factors that affect its biological risk. It is hypothesized that bacteria grown in different wastewater have different physiology and lead to variation in airborne survival. This study investigated the relationship between the cultured conditions and the bioaerosol survival. Synthetic wastewater was used as the culture medium to simulate the water quality of wastewater. Escherichia coli BW25113 were cultured in different conditions, including growth salinity, growth temperature, growth pH, and presence of pesticide. The fatty acid composition and the reduction in airborne survival of the E. coli cultured under these conditions were determined and compared. Results showed that increasing growth salinity and temperature led to a lower reduction in airborne survival of E. coli. E. coli cultured at pH 6 had a higher reduction in airborne survival than those cultured at pH 7 and 8. Moreover, a correlation was observed between the membrane fluidity (fluidity index) and the reduction airborne survival for both aerosolization and airborne suspension. A link between culture conditions, bacterial membrane fluidity, and airborne survival was established. Culture conditions (wastewater quality) that lead to a low membrane fluidity of bacteria increase the airborne survival of bioaerosol, and vice versa. This provides a new aspect to evaluate bioaerosol survival and improve assessment on biological risk of bioaerosols.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3