The Ecological Water Demand of Schizothorax in Tibet Based on Habitat Area and Connectivity

Author:

Zhou Zili,Deng Yun,Li Yong,An Ruidong

Abstract

Water resource regulation is convenient for humans, but also changes river hydrology and affects aquatic ecosystems. This study combined a field investigation and two-dimensional hydrodynamic model (MIKE21) to simulate the hydrodynamic distribution from 1 March to 30 April of 2008–2013 and establish the HDI (habitat depth suitability index) and HVI (habitat velocity suitability index) based on static hydraulic conditions at typical points. Additionally, by using MIKE21 to simulate the hydraulic state in the study area under 20 flow conditions from 530–1060 m3/s, and combining these states with the HCI (habitat cover type suitability index), HDI, and HVI, we simulated the WUA (weighted usable area) and habitat connectivity under different runoff regulation scenarios to study the water requirements of Schizothorax during the spawning period in the Yanni wetland. The results showed the following: (1) the suitable cover type was cobble and rock substrate, with nearby sandy land; furthermore, the suitable water depth was 0.5–1.5 m, and the suitable velocity was 0.1–0.9 m/s. (2) Using the proximity index to analyse the connectivity of suitable habitats, the range of ecological discharge determined by the WUA and connectivity was 424–1060 m/s. (3) Habitat quality was divided into three levels to detail the flow demand further. When the flow was 424–530 m3/s or 848–1060 m3/s, the WUA and connectivity generally met the requirements under natural conditions. When the flow was 530–636 m3/s or 742–848 m3/s, the WUA and connectivity were in a good state. When the flow was 636–742 m3/s, the WUA and connectivity were in the best state. This study complements existing research on the suitability of Schizothorax habitat in Tibet, and introduces the connectivity index to enrich the method for calculating ecological water demand, providing a reference for resource regulation and the protection of aquatic organisms.

Funder

National Key Project for Research and Development Plan

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3