Nitrogen along the Hydrological Gradient of Marsh Sediments in a Subtropical Estuary: Pools, Processes, and Fluxes

Author:

Hu WeifangORCID,Zhang Wenlong,Zhang Linhai,Tong Chuan,Sun Zhigao,Chen Yuehmin,Zeng Congsheng

Abstract

Knowledge on the distribution of nitrogen (N) pools, processes, and fluxes along hydrological gradients provides a comprehensive perspective to understand the underlying causal mechanisms in intertidal flats, and thus improve predictions and climate adaptation strategies. We used a space-for-time substitution method to quantify N pools, processes, and fluxes along a hydrological gradient. Further, we linked N pools and processes and investigated not only surface but also subsurface sediments. Our results showed a gradual decrease in total N (TN) and mineralization rates (PNmin), but an increase in potential rates of nitrification (PNR) and denitrification (PDNR) under an elevated hydrological gradient, except for TN and PNmin in the subsurface sediment, which accumulated on the interaction zone between the high and middle tidal flats. Most sedimentary ammonium N (NH4+) and nitrate N (NO3−) concentrations were similar; however, NH4+ accumulated on the subsurface of the middle tidal flat. NO3− fluxes (from −0.54 to −0.35 mmol m−2 h−1) were uptake fluxes in the intertidal flats, but NH4+ fluxes (−2.48–3.54 mmol m−2 h−1) changed from uptake to efflux in the seaward direction. Structural equation modeling of the effects of inundation frequency, underground biomass, total carbon (TC), electrical conductivity (EC), and clay proportion on the N processes revealed that these accounted for 67%, 82%, and 17% of the variance of PDNR, PNmin, and PNR, respectively. Inundation frequency, underground biomass, TC, EC, and PNmin effects on N pools accounted for 53%, 69%, and 98% of the variance of NH4+, NO3−, and TN, respectively. This suggests that future sea level rise may decrease N storage due to increase in coupled nitrification–denitrification and decrease in N mineralization, and the NH4+ flux may change from sink to source in intertidal ecosystems.

Funder

The National Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3