Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators

Author:

Okrasa MałgorzataORCID,Hitz Jörn,Nowak Aleksandra,Brochocka AgnieszkaORCID,Thelen Christoph,Walczak ZbigniewORCID

Abstract

Filtering nonwovens loaded with activated carbon are among the most popular materials used in the construction of filtering facepiece respirators (FFRs) with anti-odour properties that can be used for respiratory protection at workplaces where the occupational exposure limits of harmful substances are not exceeded. Such FFRs, in addition to a polymer filter material of varying effectiveness, also contain a layer of activated-carbon-loaded nonwoven filter, which limits the quantity of chemical compounds entering the breathing zone. The aim of this work was to analyse the influence of challenge concentration (20–120 ppm), relative humidity (2–70%), flow rate (20–55 L/min), and flow pattern (steady-state and pulsating) on the breakthrough of polymer/carbon nonwovens. A commercial activated-carbon-loaded nonwoven filter was used in this study. Its morphology and textural parameters were determined using optical microscopy, image processing, and nitrogen adsorption/desorption measurements at 77 K. Breakthrough experiments were carried out using cyclohexane vapours to assess adsorption characteristics of polymer/carbon media. The results showed that the breakthrough times decreased with increasing challenge concentration (up to 30%), relative humidity (up to 73%), and flow rate (up to 72%). The pulsating flow pattern was found to be more favourable in terms of odour reduction efficiency (up to 30%). The results indicate that all of these factors should be considered during selection and performance assessment of respirators used for odour relief.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3