Forecast and Analysis on Reducing China’s CO2 Emissions from Lime Industrial Process

Author:

Tong Qing,Zhou Sheng,Guo Yuefeng,Zhang Yang,Wei Xinyang

Abstract

China greenhouse gas inventories show that CO2 emissions from the lime industrial process are large scales and closely related to the development of its downstream industries. Therefore, there is high importance to analyze and forecast on reducing China’s CO2 emissions from lime industrial process. The aims of this paper are to make up the research gaps in China and provide a quantitative reference for related authorities to formulate relevant policies. The prediction method in this paper is consistent with the published national inventory, which is an activity data based method to predict carbon dioxide emissions from the industrial process of four categories of lime products. Three future scenarios are assumed. The business as usual scenario (BAU) is a frozen scenario. There are two emission reduction scenarios (ERS and SRS) assumed under different emission reduction strength considering combined industrial process CO2 emission reduction approaches from both the production side and the consumption side. The results show that between 2020 and 2050, China’s lime industrial process has an increasingly significant CO2 emission reduction potential, enabling both emission intensity reductions and total emission reductions to be achieved simultaneously. Based on the simulation results from emission reduction scenarios, compared with 2012 level, in 2050, the emission intensity can be reduced by 13–27%, the total lime production can be reduced by 49–78%, and the CO2 emissions in the lime industrial process can be reduced by 57–85%.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference48 articles.

1. https://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html

2. How does industrial manufacturing break down and implement the national carbon emission control targets?;Tong;Sci. Technol. Rev.,2012

3. CO2 Emissions and Influencing Factors in China’s Lime Industry;Wang;J. Subtrop. Resour. Environ.,2018

4. Analysis of Air Pollution in the Urban Center of Four Cities Sicilian

5. Experimental study of air pollution in the urban centre of the city of Messina

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3