Effectiveness Analysis of Systematic Combined Sewer Overflow Control Schemes in the Sponge City Pilot Area of Beijing

Author:

Gong Yongwei,Chen Ye,Yu Lei,Li Junqi,Pan Xingyao,Shen ZhenyaoORCID,Xu Xiang,Qiu Qianying

Abstract

Combined sewer overflow (CSO) pollution poses a serious threat to the urban water environment and is more severe in old urban areas. This research uses the old urban area in the sponge city pilot area in Tongzhou District, Beijing, as the study area. The United States Environmental Protection Agency (USEPA) storm water management model (SWMM) was used to establish the hydrologic and hydraulic model of this area. The model parameters were calibrated and validated based on the measured rainfall and runoff data. The results show that the Nash-Sutcliffe efficiency coefficient for calibration and validation is more than 0.74. Thirty-two sets of systematic CSO control schemes are formulated, which include the "gray (includes the pipes, pumps, ditches, and detention ponds engineered by people to manage stormwater) strategy" and "gray-green strategies", and the regularity of CSO control for "low impact development (LID) facilities at the source", "intercepting sewer pipes at the midway", and "storage tank at the end", are quantitatively analyzed. The results show that the LID facility has an average annual reduction rate of 22% for the CSO frequency and 35% to 49% for the CSO volume. The retrofitting of intercepting sewer pipes has an average annual reduction rate of 11% for the CSO frequency and 4% to 15% for the CSO volume, and the storage tank has an average annual reduction rate from 3% to 36% for the CSO volume; furthermore, the reduction rate decreases with the increase in the CSO volume reduction rate by LID facilities. When the CSO control target is stricter, the control effect of the "end" segment is more obvious, but the control efficiency is lower. By studying the variability of the storage tank volume under different control targets, it can be concluded that it is reasonable to set the CSO control target because the number of overflow events does not exceed four times per year for the study area.

Funder

Major Science and Technology Program for Water Pollution Control and Treatment

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3