Author:
Li Shihe,Fang Baihui,Wang Dongfang,Wang Xianqing,Man Xiaobing,Zhang Xuan
Abstract
In order to evaluate the environmental risk caused by land application of sewage sludge, leaching characteristics of heavy metals and plant nutrients in the sewage sludge immobilized by composite phosphorus-bearing materials were investigated. Their cumulative release characteristics were confirmed. Furthermore, the first-order kinetics equation, modified Elovich equation, double-constant equation, and parabolic equation were used to explore dynamic models of release. Results showed that sewage sludge addition significantly increased electricity conductivity (EC) in leachates, and the concentrations of heavy metals (Cu, Cr, Zn) and plant nutrients (N, P, K) were also obviously increased. The highest concentrations of Cu, Cr, and Zn in the leachates were all below the limit values of the fourth level in the Chinese national standard for groundwater quality (GB/T14848-2017). The immobilization of composite phosphorus-bearing materials reduced the release of Cu and Cr, while increased that of Zn. The fitting results of modified Elovich model and double-constant model were in good agreement with the leaching process of heavy metals and plant nutrients, indicating their release process in soil under simulated leaching conditions was not a simple first-order reaction, but a complex heterogeneous diffusion process controlled by multifactor.
Funder
Shandong Provincial Natural Science Foundation
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献