The Influence of Ionic and Nonionic Surfactants on the Colloidal Stability and Removal of CuO Nanoparticles from Water by Chemical Coagulation

Author:

Khan Rizwan,Inam Muhammad,Khan Sarfaraz,Jiménez Andrea,Park DuORCID,Yeom Ick

Abstract

The widespread use of copper oxide nanoparticles (CuO NPs) and surfactants in various consumer products makes it likely that they coexist in aqueous environments, making it important to study the effects of surfactants on the fate and transport behavior of CuO NPs. The present study aims to investigate the influence of anionic sodium lauryl sulfate (SLS) and nonionic nonylphenol ethoxylate (NPEO, Tergitol NP-9), on CuO NPs adsorption, aggregation, and removal from water by the coagulation process. The result of the sorption study indicates that both surfactants could be adsorbed on the surface of CuO NPs, and that SLS remarkably decreases the ζ potential as well as the hydrodynamic diameter (HDD) of CuO as compared to NP-9. The kinetic aggregation study showed that both SLS and NP-9 reduced the HDD of CuO NPs and retarded the settling rates at surfactant concentrations above 0.015% (w:v) over a 24 h-period. Moreover, enhanced aggregation of CuO NPs was observed in two environmental waters as compared to pure water, which could be related to their high ionic strength. The addition of surfactants in natural waters has been shown to reduce the aggregation and sedimentation of CuO; however, the reductive effect of SLS was more pronounced than that of NP-9. Finally, the coagulation results showed that the removal efficiencies of CuO, Cu2+, and the surfactant in all tested waters at optimum ferric chloride dosage reached around 98, 95, and 85%, respectively. Furthermore, the coagulation mechanism revealed that the combination of charge neutralization and adsorptive micellar flocculation (AMF) might be involved in the removal of both pollutants. The results of the present study provide new insight into the environmental behavior of coexisting NPs and surfactants in wastewater treatment processes.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3