External Workload Indicators of Muscle and Kidney Mechanical Injury in Endurance Trail Running

Author:

Rojas-Valverde DanielORCID,Sánchez-Ureña Braulio,Pino-Ortega JoséORCID,Gómez-Carmona CarlosORCID,Gutiérrez-Vargas Randall,Timón RafaelORCID,Olcina GuillermoORCID

Abstract

Muscle and kidney injury in endurance athletes is worrying for health, and its relationship with physical external workload (eWL) needs to be explored. This study aimed to analyze which eWL indexes have more influence on muscle and kidney injury biomarkers. 20 well-trained trail runners (age = 38.95 ± 9.99 years) ran ~35.27 km (thermal-index = 23.2 ± 1.8 °C, cumulative-ascend = 1815 m) wearing inertial measurement units (IMU) in six different spots (malleolus peroneus [MPleft/MPright], vastus lateralis [VLleft/VLright], lumbar [L1–L3], thoracic [T2–T4]) for eWL measuring using a special suit. Muscle and kidney injury serum biomarkers (creatin-kinase [sCK], creatinine (sCr), ureic-nitrogen (sBUN), albumin [sALB]) were assessed pre-, -post0h and post24h. A principal component (PC) analysis was performed in each IMU spot to extract the main variables that could explain eWL variance. After extraction, PC factors were inputted in multiple regression analysis to explain biomarkers delta change percentage (Δ%). sCK, sCr, sBUN, sALB presented large differences (p < 0.05) between measurements (pre < post24h < post0h). PC’s explained 77.5–86.5% of total eWL variance. sCK Δ% was predicted in 40 to 47% by L1–L3 and MPleft; sCr Δ% in 27% to 45% by L1–L3 and MPleft; and sBUN Δ% in 38%-40% by MPright and MPleft. These findings could lead to a better comprehension of how eWL (impacts, player load and approximated entropy) could predict acute kidney and muscle injury. These findings support the new hypothesis of mechanical kidney injury during trail running based on L1–L3 external workload data.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3