Enhancing Chlorobenzene Biodegradation by Delftia tsuruhatensis Using a Water-Silicone Oil Biphasic System

Author:

Ye Jie-Xu,Lin Tong-Hui,Hu Jing-Tao,Poudel Rabin,Cheng Zhuo-Wei,Zhang Shi-Han,Chen Jian-Meng,Chen Dong-Zhi

Abstract

In this study, a water–silicone oil biphasic system was developed to enhance the biodegradation of monochlorobenzene (CB) by Delftia tsuruhatensis LW26. Compared to the single phase, the biphasic system with a suitable silicone oil fraction (v/v) of 20% allowed a 2.5-fold increase in the maximum tolerated CB concentration. The CB inhibition on D. tsuruhatensis LW26 was reduced in the presence of silicone oil, and the electron transport system activity was maintained at high levels even under high CB stress. Adhesion of cells to the water–oil interface at the water side was observed using confocal laser scanning microscopy. Nearly 75% of cells accumulated on the interface, implying that another interfacial substrate uptake pathway prevailed besides that initiated by cells in the aqueous phase. The 8-fold increase in cell surface hydrophobicity upon the addition of 20% (v/v) silicone oil showed that silicone oil modified the surface characteristics of D. tsuruhatensis LW26. The protein/polysaccharide ratio of extracellular polymeric substances (EPS) from D. tsuruhatensis LW26 presented a 3-fold enhancement. These results suggested that silicone oil induced the increase in the protein content of EPS and rendered cells hydrophobic. The resulting hydrophobic cells could adhere on the water–oil interface, improving the mass transfer by direct CB uptake from silicone oil.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Program for Changjiang Scholars and Innovative Research Team in University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3