Author:
Zhang Deying,Bai Kaixu,Zhou Yunyun,Shi Runhe,Ren Hongyan
Abstract
Air pollutants existing in the environment may have negative impacts on human health depending on their toxicity and concentrations. Remote sensing data enable researchers to map concentrations of various air pollutants over vast areas. By combining ground-level concentrations with population data, the spatial distribution of health impacts attributed to air pollutants can be acquired. This study took five highly populated and severely polluted provinces along the Huaihe River, China, as the research area. The ground-level concentrations of four major air pollutants including nitrogen dioxide (NO2), sulfate dioxide (SO2), particulate matters with diameter equal or less than 10 (PM10) or 2.5 micron (PM2.5) were estimated based on relevant remote sensing data using the geographically weighted regression (GWR) model. The health impacts of these pollutants were then assessed with the aid of co-located gridded population data. The results show that the annual average concentrations of ground-level NO2, SO2, PM10, and PM2.5 in 2016 were 31 µg/m3, 26 µg/m3, 100 µg/m3, and 59 µg/m3, respectively. In terms of the health impacts attributable to NO2, SO2, PM10, and PM2.5, there were 546, 1788, 10,595, and 8364 respiratory deaths, and 1221, 9666, 46,954, and 39,524 cardiovascular deaths, respectively. Northern Henan, west-central Shandong, southern Jiangsu, and Wuhan City in Hubei are prone to large health risks. Meanwhile, air pollutants have an overall greater impact on cardiovascular disease than respiratory disease, which is primarily attributable to the inhalable particle matters. Our findings provide a good reference to local decision makers for the implementation of further emission control strategies and possible health impacts assessment.
Funder
National Key Research and Development Program of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献