The Relationship between Sound and Amenities of Transit-Oriented Developments

Author:

Yildirim YalcinORCID,Jones Allen Diane,Albright Amy

Abstract

Experts in diverse fields have investigated sound in cities throughout the United States. This research aims to examine sound levels and determine its contributors at the transit-oriented development (TOD) station and neighborhood levels by studying selected Dallas Area Rapid Transit (DART) light rail stations. A multilevel analysis was performed to model the likelihood of TOD stations and neighborhoods affecting sound levels, controlling for station amenities, socio-demographics and built environment characteristics. Sound measurements were sampled in three time intervals with 15 min sampling over weekdays and weekends at TOD and non-TOD stations by a type II SPL meter that was mounted on a small camera tripod at a height of 1.5 m, at a distance of 1.5 m from rails and curbs. The research team found that amenities, built environmental characteristics, and neighborhood features have significant implications on sound levels at both the TOD station and the neighborhood level, which affects quality of life (QoL). TOD stations that include more amenities have a greater level of significance on sound levels. Additionally, neighborhoods with a pervasive street grid configuration, public facilities, and built environment densities are significantly associated with a likelihood of high sound levels. Conversely, higher population densities and intersection densities decrease the likelihood of a high sound level environment. These patterns provide an arena for transportation, urban, and environmental planning and policymaking to generate transformative solutions and policies.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3