A Risk-Averse Shelter Location and Evacuation Routing Assignment Problem in an Uncertain Environment

Author:

Liang BianORCID,Yang DapengORCID,Qin Xinghong,Tinta Teresa

Abstract

Disasters such as hurricanes, earthquakes and floods continue to have devastating socioeconomic impacts and endanger millions of lives. Shelters are safe zones that protect victims from possible damage, and evacuation routes are the paths from disaster zones toward shelter areas. To enable the timely evacuation of disaster zones, decisions regarding shelter location and routing assignment (i.e., traffic assignment) should be considered simultaneously. In this work, we propose a risk-averse stochastic programming model with a chance constraint that takes into account the uncertainty in the demand of disaster sites while minimizing the total evacuation time. The total evacuation time reflects the efficacy of emergency management from a system optimal (SO) perspective. A conditional value-at-risk (CVaR) is incorporated into the objective function to account for risk measures in the presence of uncertain post-disaster demand. We resolve the non-linear travel time function of traffic flow by employing a second-order cone programming (SOCP) approach and linearizing the non-linear chance constraints into a new mixed-integer linear programming (MILP) reformulation so that the problem can be directly solved by state-of-the-art optimization solvers. We illustrate the application of our model using two case studies. The first case study is used to demonstrate the difference between a risk-neutral model and our proposed model. An extensive computational study provides practical insight into the proposed modeling approach using another case study concerning the Black Saturday bushfire in Australia.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3