Abstract
The application of Value-based Healthcare requires not only the identification of key processes in the clinical domain but also an adequate analysis of the value chain delivered to the patient. Data Science and Big Data approaches are technologies that enable the creation of accurate systems that model reality. However, classical Data Mining techniques are presented by professionals as black boxes. This evokes a lack of trust in those techniques in the medical domain. Process Mining technologies are human-understandable Data Science tools that can fill this gap to support the application of Value-Based Healthcare in real domains. The aim of this paper is to perform an analysis of the ways in which Process Mining techniques can support health professionals in the application of Value-Based Technologies. For this purpose, we explored these techniques by analyzing emergency processes and applying the critical timing of Stroke treatment and a Question-Driven methodology. To demonstrate the possibilities of Process Mining in the characterization of the emergency process, we used a real log with 9046 emergency episodes from 2145 stroke patients that occurred from January 2010 to June 2017. Our results demonstrate how Process Mining technology can highlight the differences between the flow of stroke patients compared with that of other patients in an emergency. Further, we show that support for health professionals can be provided by improving their understanding of these techniques and enhancing the quality of care.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献