Quantitative Evaluation of the Eco-Environment in a Coalfield Based on Multi-Temporal Remote Sensing Imagery: A Case Study of Yuxian, China

Author:

Wang Xue,Tan Kun,Xu Kailei,Chen YuORCID,Ding Jianwei

Abstract

With the exploitation of coalfields, the eco-environment around the coalfields can become badly damaged. To address this issue, “mine greening” has been proposed by the Ministry of Land and Resources of China. The sustainable development of mine environments has now become one of the most prominent issues in China. In this study, we aimed to make use of Landsat 7 ETM+ and Landsat 8 OLI images obtained between 2005 and 2016 to analyze the eco-environment in a coalfield. Land cover was implemented as the basic evaluation factor to establish the evaluation model for the eco-environment. Analysis and investigation of the eco-environment in the Yuxian coalfield was conducted using a novel evaluation model, based on the biological abundance index, vegetation coverage index, water density index, and natural geographical factors. The weight of each indicator was determined by an analytic hierarchy process. Meanwhile, we also used the classic ecological footprint to calculate the ecological carrying capacity in order to verify the effectiveness of the evaluation model. Results showed that the eco-environment index illustrated a slowly increasing tendency over the study period, and the ecological quality could be considered as “good”. The results of the evaluation model showed a strong correlation with the ecological carrying capacity with a correlation coefficient of 0.9734. In conclusion, the evaluation method is a supplement to the time-series quantitative evaluation of the eco-environment, and also helps us to explore the eco-environment in the mining area.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference54 articles.

1. Socioeconomic vulnerability in China's hydropower development

2. Sudden surface collapse disasters caused by shallow partial mining in Datong coalfield, China

3. Mine Greening and Utilization of Abandoned Mines;Wei;J. Northwest For. Univ.,2009

4. Discussion on the Evaluation Index System for Green Mine Construction;Huang;Met. Mine,2009

5. A Review of Fine-Scale Land Use and Land Cover Classification in Open-Pit Mining Areas by Remote Sensing Techniques

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3