Integrating Germline and Somatic Mutation Information for the Discovery of Biomarkers in Triple-Negative Breast Cancer

Author:

Wu Jiande,Mamidi Tarun,Zhang Lu,Hicks Chindo

Abstract

Recent advances in high-throughput genotyping and the recent surge of next generation sequencing of the cancer genomes have enabled discovery of germline mutations associated with an increased risk of developing breast cancer and acquired somatic mutations driving the disease. Emerging evidence indicates that germline mutations may interact with somatic mutations to drive carcinogenesis. However, the possible oncogenic interactions and cooperation between germline and somatic alterations in triple-negative breast cancer (TNBC) have not been characterized. The objective of this study was to investigate the possible oncogenic interactions and cooperation between genes containing germline and somatic mutations in TNBC. Our working hypothesis was that genes containing germline mutations associated with an increased risk developing breast cancer also harbor somatic mutations acquired during tumorigenesis, and that these genes are functionally related. We further hypothesized that TNBC originates from a complex interplay among and between genes containing germline and somatic mutations, and that these complex array of interacting genetic factors affect entire molecular networks and biological pathways which in turn drive the disease. We tested this hypothesis by integrating germline mutation information from genome-wide association studies (GWAS) with somatic mutation information on TNBC from The Cancer Genome Atlas (TCGA) using gene expression data from 110 patients with TNBC and 113 controls. We discovered a signature of 237 functionally related genes containing both germline and somatic mutations. We discovered molecular networks and biological pathways enriched for germline and somatic mutations. The top pathways included the hereditary breast cancer and role of BRCA1 in DNA damage response signaling pathways. In conclusion, this is the first large-scale and comprehensive analysis delineating possible oncogenic interactions and cooperation among and between genes containing germline and somatic mutations in TNBC. Genetic and somatic mutations, along with the genes discovered in this study, will require experimental functional validation in different ethnic populations. Functionally validated genetic and somatic variants will have important implications for the development of novel precision prevention strategies and discovery of prognostic markers in TNBC.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3