Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work

Author:

Schmalz Thomas,Schändlinger Jasmin,Schuler Marvin,Bornmann Jonas,Schirrmeister Benjamin,Kannenberg Andreas,Ernst MichaelORCID

Abstract

Overhead work activities can lead to shoulder pain and serious musculoskeletal disorders (WMSD), such as rotator cuff injury and degeneration. Recently developed exoskeletons show promising results in supporting workers in such activities. In this study, a novel exoskeleton was investigated for two different overhead tasks with twelve participants. To investigate the effects of the device, electromyographic (EMG) signals of different shoulder and adjacent muscles as well as kinematic and metabolic parameters were analyzed with and without the exoskeleton. The mean EMG amplitude of all evaluated muscles was significantly reduced when the exoskeleton was used for the overhead tasks. This was accompanied by a reduction in both heart rate and oxygen rate. The kinematic analysis revealed small changes in the joint positions during the tasks. This study demonstrated the biomechanical and metabolic benefits of an exoskeleton designed to support overhead work activities. The results suggest improved physiological conditions and an unloading effect on the shoulder joint and muscles which are promising indicators that the exoskeleton may be a good solution to reduce shoulder WMSD among workers who carry out overhead tasks on a regular basis.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference31 articles.

1. Work-Related Musculoskeletal Disorders: Prevention Report;Podniece,2008

2. Risk of shoulder tendinitis in relation to shoulder loads in monotonous repetitive work

3. Overhead work: Identification of evidence-based exposure guidelines;Grieve;Occup. Ergon.,2008

4. Clinical and ergonomic factors in prolonged shoulder pain among industrial workers

5. Ergonomics and efficiency with manipulators—Application criterias for manipulation devices in the serial assembly for medium and low weights;Reinhart;wt Werkstattstech. Online,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3