Selection of Level-Dependent Hearing Protectors for Use in An Indoor Shooting Range

Author:

Mlynski RafalORCID,Kozlowski EmilORCID

Abstract

The high sound pressure level generated by impulse noise produced in an indoor shooting range makes it necessary to protect the hearing of the people it affects. Due to the need for verbal communication during training at a shooting range, level-dependent hearing protectors are useful. The objective of this study was to answer the question of whether it is possible to properly protect the hearing of a shooting instructor using level-dependent hearing protectors. The noise parameters were measured in the places where the instructor was present at the shooting range. The division of a specific group of trained shooters into subgroups consisting of three or six simultaneously shooting individuals did not significantly affect the exposure of the shooting instructor to the noise. An assessment of noise reduction was carried out for eight models of earmuffs and two variants of earplugs, using computational methods for the selection of hearing protectors. Among the noise parameters, both the A-weighted equivalent sound pressure level and the C-weighted peak sound pressure level were taken into account. Depending on the assessment criterion adopted, a sufficient reduction in impulse noise was provided by either four or six out of the 10 hearing protectors included in the study.

Funder

Ministry of Science and Higher Education/National Centre for Research and Development

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Characteristics Study of a Newly Developed Suppression System;2023 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream);2023-04-27

2. Performance Analysis of Different Gun Silencers;Applied Sciences;2023-03-30

3. Impulse noise measurement in view of noise hazard assessment and use of hearing protectors;International Journal of Occupational Safety and Ergonomics;2023-03-06

4. Evaluation of occupational noise exposure among forest machine operators: a study on the harvest of Pinus taeda trees;Australian Forestry;2022-04-03

5. The influence of frequency component content on the selection result of hearing protectors;International Journal of Occupational Safety and Ergonomics;2021-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3