Author:
Asmarian Naeimehossadat,Ayatollahi Seyyed Mohammad Taghi,Sharafi Zahra,Zare Najaf
Abstract
Hierarchical Bayesian log-linear models for Poisson-distributed response data, especially Besag, York and Mollié (BYM) model, are widely used for disease mapping. In some cases, due to the high proportion of zero, Bayesian zero-inflated Poisson models are applied for disease mapping. This study proposes a Bayesian spatial joint model of Bernoulli distribution and Poisson distribution to map disease count data with excessive zeros. Here, the spatial random effect is simultaneously considered into both logistic and log-linear models in a Bayesian hierarchical framework. In addition, we focus on the BYM2 model, a re-parameterization of the common BYM model, with penalized complexity priors for the latent level modeling in the joint model and zero-inflated Poisson models with different type of zeros. To avoid model fitting and convergence issues, Bayesian inferences are implemented using the integrated nested Laplace approximation (INLA) method. The models are compared according to the deviance information criterion and the logarithmic scoring. A simulation study with different proportions of zero exhibits INLA ability in running the models and also shows slight differences between the popular BYM and BYM2 models in terms of model choice criteria. In an application, we apply the fitting models on male breast cancer data in Iran at county level in 2014.
Funder
Shiraz University of Medical Sciences
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献