Spatiotemporal Associations between PM2.5 and SO2 as well as NO2 in China from 2015 to 2018

Author:

Li Ke,Bai KaixuORCID

Abstract

Given the critical roles of nitrates and sulfates in fine particulate matter (PM2.5) formation, we examined spatiotemporal associations between PM2.5 and sulfur dioxide (SO2) as well as nitrogen dioxide (NO2) in China by taking advantage of the in situ observations of these three pollutants measured from the China national air quality monitoring network for the period from 2015 to 2018. Maximum covariance analysis (MCA) was applied to explore their possible coupled modes in space and time. The relative contribution of SO2 and NO2 to PM2.5 was then quantified via a statistical modeling scheme. The linear trends derived from the stratified data show that both PM2.5 and SO2 decreased significantly in northern China in terms of large values, indicating a fast reduction of high PM2.5 and SO2 loadings therein. The statistically significant coupled MCA mode between PM2.5 and SO2 indicated a possible spatiotemporal linkage between them in northern China, especially over the Beijing–Tianjin–Hebei region. Further statistical modeling practices revealed that the observed PM2.5 variations in northern China could be explained largely by SO2 rather than NO2 therein, given the estimated relatively high importance of SO2. In general, the evidence-based results in this study indicate a strong linkage between PM2.5 and SO2 in northern China in the past few years, which may help to better investigate the mechanisms behind severe haze pollution events in northern China.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3